

# MUTAH UNIVERSITY Faculty of Engineering Department of Electrical Engineering



|                    | Cours           | e Syllabus |               |
|--------------------|-----------------|------------|---------------|
| <b>Course Code</b> | Course Name     | Credits    | Contact Hours |
| 0401362            | Electronics (2) | 3          | 3 T           |

| INSTRUCTOR/COORDINATOR |                               |  |
|------------------------|-------------------------------|--|
| Name                   | Dr. Ayman Allawama            |  |
| Email                  | Lawama@mutah.edu.jo           |  |
| <b>Office Hours</b>    | 12:00-13:00 (Sun, Tues, Thur) |  |

| ТЕХТВООК                     |                                                                     |  |
|------------------------------|---------------------------------------------------------------------|--|
| Title                        | Principles of Electronic Circuits                                   |  |
| Author/Year/Edition          | Stanley G. Burns, Paul R. Bond/1997/Second Edition                  |  |
| Other Supplemental Materials |                                                                     |  |
| Title                        | Electronic Devices and Circuit Theory                               |  |
| Author/Year/Edition          | Mic Robert Boylestad, Louis Nashelsky/2012/11 <sup>th</sup> edition |  |

## SPECIFIC COURSE INFORMATION

## A. Brief Description of the Content of the Course (Catalog Description)

Biasing of discrete BJT and MOSFET . BJT amplifiers. MOS Amplifiers. Analysis and design of different configurations. Cascade Amplifiers Circuit. Frequency analysis of BJT amplifiers and MOSFET amplifiers. Bode plots. Operational Amplifier. Differential Amplifiers.

## **B.** Pre-requisites (P) or Co-requisites (C)

Electronics (1) (0401261) (**P**)

## **C.** Course Type (Required or Elective)

Required

SPECIFIC GOALS

## A. Course Learning Outcomes (CLOs)

By the end of this course, the student should be able to:

CLO1: Understand the configurations of CE,CB,CC configurations [1].

| <b>CLO2</b> : Understand the configurations of CS,CG,CD configurations [1]. |   |   |   |   |   |   |
|-----------------------------------------------------------------------------|---|---|---|---|---|---|
| <b>CLO3:</b> Analyze and design cascade amplifier circuit [2].              |   |   |   |   |   |   |
| <b>CLO4:</b> Analyze and design operational and differential amplifier [2]. |   |   |   |   |   |   |
| B. Student Learning Outcomes (SOs) Addressed by the Course                  |   |   |   |   |   |   |
| 1                                                                           | 2 | 3 | 4 | 5 | 6 | 7 |
| ✓                                                                           | ✓ |   |   |   |   |   |

| BRIEF LIST OF TOPICS TO BE COVERED                                                                                                                               |                 |                  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|--|--|
| List of Topics                                                                                                                                                   | No. of<br>Weeks | Contact<br>Hours |  |  |
| Introduction to BJT and MOSFET circuits.                                                                                                                         | 1               | 3                |  |  |
| DC biasing of BJT and MOS amplifiers . Design stability.                                                                                                         | 2               | 6                |  |  |
| Small signal analysis using h-parameters of Common Emitter, Voltage<br>swing limitations, Common collector and common base amplifiers -<br>Darlington amplifier. | 2               | 6                |  |  |
| Small signal analysis of JFET amplifiers- Small signal analysis of<br>MOSFET, Common Source amplifier, Source follower and Common Gate<br>amplifier.             | 2               | б                |  |  |
| Frequency analysis of BJT and MOSFET amplifiers. Bode Plots.                                                                                                     | 2               | 6                |  |  |
| Analysis and design cascade amplifier circuit.                                                                                                                   | 1               | 3                |  |  |
| Operational amplifiers .Inverting and noninverting configurations.<br>Integrator and Differentiator. op-amp applications.                                        | 3               | 9                |  |  |
| Differential amplifier circuits.                                                                                                                                 | 1               | 3                |  |  |
| Total                                                                                                                                                            | 14              | 42               |  |  |

| EVALUATION                                      |                                      |            |
|-------------------------------------------------|--------------------------------------|------------|
| Assessment Tool                                 | Due Date                             | Weight (%) |
| Mid Exam                                        | According to the university calendar | 30         |
| Course Work (Homeworks, Quizzes, Projects,etc.) | One week after being assigned        | 20         |
| Final Exam                                      | According to the university calendar | 50         |

| ABET's Students Learning Outcomes (Criterion # 3) |                                  |                                                                                                                                                                                                                                             |  |
|---------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                   | Relationship to program outcomes |                                                                                                                                                                                                                                             |  |
| ABET<br>1-7                                       |                                  | Engineering Student Outcomes                                                                                                                                                                                                                |  |
| 1                                                 |                                  | an ability to identify, formulate, and solve complex engineering problems by<br>applying principles of engineering, science, and mathematics                                                                                                |  |
| 2                                                 | $\checkmark$                     | an ability to apply engineering design to produce solutions that meet specified needs<br>with consideration of public health, safety, and welfare, as well as global, cultural,<br>social, environmental, and economic factors.             |  |
| 3                                                 |                                  | an ability to communicate effectively with a range of audiences.                                                                                                                                                                            |  |
| 4                                                 |                                  | an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts. |  |
| 5                                                 |                                  | an ability to function effectively on a team whose members together provide<br>leadership, create a collaborative and inclusive environment, establish goals, plan<br>tasks, and meet objectives.                                           |  |
| 6                                                 |                                  | an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.                                                                                                |  |
| 7                                                 |                                  | an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.                                                                                                                                             |  |